2007年9月,在中国举行了第五届女足世界杯,受到了世人瞩目.现假设某组有四个球队,分别为A,B,C,D四个足球队,在小组赛中她们进行循环比赛(即任意两队之间都要比赛一场),赛了若干场后,她们之间的比赛情况如下:
|
比赛 |
|
|
|
|
|
场数 |
胜的 |
|
|
|
|
|
场数 |
负的 |
|
|
|
|
|
场数 |
平的 |
|
|
|
|
|
场数 |
入球数 |
失球数 |
|
|
|
|
A队 |
2 |
0 |
2 |
0 |
3 |
6 |
B队 |
2 |
1 |
0 |
1 |
4 |
3 |
C队 |
3 |
2 |
0 |
1 |
2 |
0 |
D队 |
|
|
|
|
|
|
注1:在两队比赛中,以入球数多的一方为胜
注2:假设甲,乙两队比赛中,甲入球数为3,失球数为2(即乙队入球数为2),则我们把甲、乙两队的比赛成绩记为:甲队:乙队=3:2
根据上表,回答下列问题
(1)由于C队已赛了3场,即C队和其他的队都已经比赛过,则他们之间的比赛成绩为C:A= ;C:B= ;C:D= ;
(2)根据表格,D队到目前为止共比赛了 场,其中胜了 场;
(3)根据表格,请问D队到目前为止共入球几个,失球几个,并简单说明理由.
(本小题满分8分)
某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为i00分)如图所示.
(1)根据图示填写下表;
(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;
(3)计算两班复赛成绩的方差。
(本小题满分8分)如图,某校数学兴趣小组的同学欲测量一座垂直于地面的古塔BD的高度,他们先在A处测得古塔顶端点D的仰角为45°,再沿着BA的方向后退20m至C处,测得古塔顶端点D的仰角为30°。求该古塔BD的高度(,结果保留一位小数)。
(本题共两小题.每小题6分.满分l2分)
(1)计算:
(2)求满足不等式组的整数解。
已知抛物线经过A(3,0), B(4,1)两点,且与y轴交于点C.
(1)求抛物线的函数关系式及点C的坐标;
(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.
如图,梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,现有两个动点P、Q
分别从B、D两点同时出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每秒1cm
的速度沿DA向终点A移动,线段PQ与BD相交于点E,过E作EF∥BC交CD于点F,射线
QF交BC的延长线于点H,设动点P、Q移动的时间为t(单位:秒,0<t<10).
(1)当t为何值时,四边形PCDQ为平行四边形?
(2)在P、Q移动的过程中,线段PH的长是否发生改变?如果不变,求出线段PH的长;如果改变,请说明理由.