如图所示,坐标系xOy在竖直平面内,长为L的水平轨道AB光滑且绝缘,B点坐标为.有一质量为m、电荷量为+q的带电小球(可看成质点)被固定在A点.已知在第一象限内分布着互相垂直的匀强电场和匀强磁场,电场方向竖直向上,场强大小E2=
,磁场为水平方向(在图中垂直纸面向外),磁感应强度大小为B;在第二象限内分布着沿x轴正方向的水平匀强电场,场强大小E1=
.现将带电小球从A点由静止释放,设小球所带的电荷量不变.试求:
(1)小球运动到B点时的速度大小;
(2)小球第一次落地点与O点之间的距离;
(3)小球从开始运动到第一次落地所经历的时间.
如右图所示,在倾角为37°的固定斜面上静置一个质量为5 kg的物体,物体与斜面间的动摩擦因数为0.8.求:
(1)物体所受的摩擦力;(sin 37°=0.6,cos 37°=0.8)
(2)若用原长为10 cm,劲度系数为的弹簧沿斜面向上拉物体,使之向上匀速运动,则弹簧的最终长度是多少?(取
)
如右图所示,两条平行的光滑金属导轨固定在倾角为θ的绝缘斜面上,导轨上端连接一个定值电阻.导体棒a和b放在导轨上,与导轨垂直并良好接触.斜面上水平虚线PQ以下区域内,存在着垂直穿过斜面向上的匀强磁场.现对a棒施以平行导轨斜向上的拉力,使它沿导轨匀速向上运动,此时放在导轨下端的b棒恰好静止.当a棒运动到磁场的上边界PQ处时,撤去拉力, a棒将继续沿导轨向上运动一小段距离后再向下滑动,此时b棒已滑离导轨.当a棒再次滑回到磁场上边界PQ处时,又恰能沿导轨匀速向下运动.已知a棒、b棒和定值电阻的阻值均为R,b棒的质量为m,重力加速度为g,导轨电阻不计.求:
(1)a棒在磁场中沿导轨向上运动的过程中,a棒中的电流强度Ia与定值电阻R中的电流强度IR之比;
(2)a棒质量ma;
(3)a棒在磁场中沿导轨向上运动时所受的拉力F.
如图所示,宽度L=0.5 m的光滑金属框架MNPQ固定于水平面内,并处在磁感应强度大小B=0.4 T,方向竖直向下的匀强磁场中,框架的电阻非均匀分布.将质量m=0.1 kg,电阻可忽略的金属棒ab放置在框架上,并与框架接触良好.以P为坐标原点,PQ方向为x轴正方向建立坐标.金属棒从处以
的初速度,沿x轴负方向做
的匀减速直线运动,运动中金属棒仅受安培力作用.求:
(1)金属棒ab运动0.5 m,框架产生的焦耳热Q;
(2)框架中aNPb部分的电阻R随金属棒ab的位置x变化的函数关系;
(3)为求金属棒ab沿x轴负方向运动0.4 s过程中通过ab的电荷量q,某同学解法为:先算出经过0.4 s金属棒的运动距离x,以及0.4 s时回路内的电阻R,然后代入求解.指出该同学解法的错误之处,并用正确的方法解出结果.
如图所示,在一倾角为37°的粗糙绝缘斜面上,静止地放置着一个匝数n=10匝的圆形线圈,其总电阻R=3.14 Ω、总质量m=0.4 kg、半径r=0.4 m.如果向下轻推一下此线圈,则它刚好可沿斜面匀速下滑.现在将线圈静止放在斜面上后.在线圈的水平直径以下的区域中,加上垂直斜面方向的,磁感应强度大小按如下图所示规律变化的磁场(提示:通电半圆导线受的安培力与长为直径的直导线通同样大小的电流时受的安培力相等)问:
(1)刚加上磁场时线圈中的感应电流大小I.
(2)从加上磁场开始到线圈刚要运动,线圈中产生的热量Q.(最大静摩擦力等于滑动摩擦力,sin 37°=0.6,cos 37°=0.8,g取)
参加电视台娱乐节目,选手要从较高的平台上以水平速度跃出后,落在水平传送带上,已知平台与传送带高度差H=1.8 m,水池宽度x0=1.2 m,传送带A、B间的距离L0=20 m,由于传送带足够粗糙,假设人落到传送带上后瞬间相对传送带静止,经过一个Δt=1.0 s反应时间后,立刻以a=2 m/s2恒定向右加速度跑至传送带最右端.
(1)若传送带静止,选手以v0=3 m/s水平速度从平台跃出,求从开始跃出到跑至传送带右端经历的时间.
(2)若传送带以u=1 m/s的恒定速度向左运动,选手要能到达传送带右端,他从高台上跃出的水平速度v1至少多大?在此情况下到达B点时速度大小是多少?