如图,已知A(-4,2)、B(n,-4)是一次函数y=kx+b的图象与反比例函数 的图象的两个交点.
(1)求此反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.
如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=4,PE=1.
(1)求证:∠BPQ=60°(提示:利用三角形全等、外角的性质)
(2)求BE的长.
如图所示,已知点A,F,E,C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.
(1)从图中任找两组全等三角形;
(2)从(1)中任选一组进行证明.
△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.作出△ABC关于y对称的△A1B1C1,并写出点△A1B1C1的坐标.
先化简,再求值:,其中x=3
(1)计算:(x+y)2-y(2x+y)
(2)先计算,再把计算所得的多项式分解因式:(12a3-12a2+3a)÷3a.