某校计划开设4门选修课:音乐、绘画、体育、舞蹈,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门),对调查结果进行统计后,绘制了如下不完整的两个统计图.
根据以上统计图提供的信息,回答下列问题:
(1)此次调查抽取的学生人数为a= 人,其中选择“绘画”的学生人数占抽样人数的百分比为b= ;
(2)补全条形统计图;
(3)若该校有2000名学生,请估计全校选择“绘画”的学生大约有多少人?
端午节是中国的传统节日,民间有端午节吃粽子的习俗.在端午节来临之际,某校七、八年级开展了一次“包粽子”实践活动,对学生的活动情况按 分制进行评分,成绩(单位:分)均为不低于 的整数.为了解这次活动的效果,现从这两个年级各随机抽取 名学生的活动成绩作为样本进行整理,并绘制统计图表,部分信息如下:
八年级 名学生活动成绩统计表
成绩/分 |
6 |
7 |
8 |
9 |
10 |
人数 |
1 |
2 |
a |
b |
2 |
已知八年级 名学生活动成绩的中位数为 分.
请根据以上信息,完成下列问题:
(1)样本中,七年级活动成绩为 分的学生数是_____,七年级活动成绩的众数为 _____分;
(2) _____, _____;
(3)若认定活动成绩不低于 分为“优秀”,根据样本数据,判断本次活动中优秀率高的年级是否平均成绩也高,并说明理由.
已知四边形 内接于 ,对角线 是 的直径.
(1)如图1,连接 ,若 ,求证: 平分 ;
(2)如图2, 为 内一点,满足 .若 , ,求弦 的长.
如图, 是同一水平线上的两点,无人机从 点竖直上升到 点时,测得 到 点的距离为 , 点的俯角为 ,无人机继续竖直上升到 点,测得 点的俯角为 .求无人机从 点到 点的上升高度 (精确到 ).
参考数据: .
【观察思考】
【规律发现】
请用含 的式子填空:
(1)第 个图案中“◎”的个数为_____;
(2)第1个图案中“★”的个数可表示为 ,第 个图案中“★”的个数可表示为 ,第 个图案中“★”的个数可表示为 ,第 个图案中“★”的个数可表示为 ,……,第 个图案中“★”的个数可表示为_____.
【规律应用】
(3)结合图案中“★”的排列方式及上述规律,求正整数 ,使得连续的正整数之和 等于第 个图案中“◎”的个数的 倍.
根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨 ,乙地降价 元.已知销售单价调整前甲地比乙地少 元,调整后甲地比乙地少 元,求调整前甲、乙两地该商品的销售单价.