游客
题文

如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).

(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?
(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 相似多边形的性质
登录免费查看答案和解析
相关试题

如图,在平面直角坐标系中,抛物线 y = 1 2 x 2 + bx + c 与坐标轴交于 A ( 0 , - 2 ) B ( 4 , 0 ) 两点,直线 BC : y = - 2 x + 8 y 轴于点 C .点 D 为直线 AB 下方抛物线上一动点,过点 D x 轴的垂线,垂足为 G DG 分别交直线 BC AB 于点 E F

(1)求抛物线 y = 1 2 x 2 + bx + c 的表达式;

(2)当 GF = 1 2 时,连接 BD ,求 ΔBDF 的面积;

(3)① H y 轴上一点,当四边形 BEHF 是矩形时,求点 H 的坐标;

②在①的条件下,第一象限有一动点 P ,满足 PH = PC + 2 ,求 ΔPHB 周长的最小值.

问题解决:如图1,在矩形 ABCD 中,点 E F 分别在 AB BC 边上, DE = AF DE AF 于点 G

(1)求证:四边形 ABCD 是正方形;

(2)延长 CB 到点 H ,使得 BH = AE ,判断 ΔAHF 的形状,并说明理由.

类比迁移:如图2,在菱形 ABCD 中,点 E F 分别在 AB BC 边上, DE AF 相交于点 G DE = AF AED = 60 ° AE = 6 BF = 2 ,求 DE 的长.

如图, ΔABC 内接于 O D O 的直径 AB 的延长线上一点, DCB = OAC .过圆心 O BC 的平行线交 DC 的延长线于点 E

(1)求证: CD O 的切线;

(2)若 CD = 4 CE = 6 ,求 O 的半径及 tan OCB 的值.

如图1,小刚家、学校、图书馆在同一条直线上,小刚骑自行车匀速从学校到图书馆,到达图书馆还完书后,再以相同的速度原路返回家中(上、下车时间忽略不计).小刚离家的距离 y ( m ) 与他所用的时间 x ( min ) 的函数关系如图2所示.

(1)小刚家与学校的距离为    m ,小刚骑自行车的速度为    m / min

(2)求小刚从图书馆返回家的过程中, y x 的函数表达式;

(3)小刚出发35分钟时,他离家有多远?

为庆祝中国共产党建党100周年,某校开展了以"学习百年党史,汇聚团结伟力"为主题的知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分成 A B C D E 五个等级,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:

等级

成绩 x

A

50 x < 60

B

60 x < 70

C

70 x < 80

D

80 x < 90

E

90 x 100

(1)本次调查一共随机抽取了   名学生的成绩,频数分布直方图中 m =   

(2)补全学生成绩频数分布直方图;

(3)所抽取学生成绩的中位数落在   等级;

(4)若成绩在80分及以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少人?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号