已知椭圆的离心率,点A为椭圆上一点,.(1)求椭圆C的方程;(2)设动直线与椭圆C有且只有一个公共点P,且与直线相交于点Q.问:在轴上是否存在定点M,使得以PQ为直径的圆恒过定点M?若存在,求出点M的坐标;若不存在,说明理由.
已知椭圆的左、右焦点分别为,,过的直线交椭圆于B,D两点,过的直线交椭圆于A,C两点,且,垂足为P. (Ⅰ)设P点的坐标为,证明:; (Ⅱ)求四边形ABCD的面积的最小值.
己知双曲线C:与直线:x + y = 1相交于两个不同的点A、B. (I)求双曲线C的离心率e的取值范围; (Ⅱ) 设直线与y轴交点为P,且,求的值
代表实数,讨论方程所表示的曲线。
已知:实数满足,其中;:实数满足,且是的必要不充分条件,求的取值范围。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号