(本小题满分13分)已知椭圆的焦点在轴上,它的一个顶点恰好是抛物线
的焦点,离心率
.
(1)求椭圆的标准方程;
(2)过椭圆的右焦点作与坐标轴不垂直的直线
,交椭圆于
、
两点,设点
是线段
上的一个动点,且
,求
的取值范围;
(3)设点是点
关于
轴的对称点,在
轴上是否存在一个定点
,使得
、
、
三点共线?若存
在,求出定点的坐标,若不存在,请说明理由.
(本小题满分12分)已知函数在区间
上的值域为
.
(1)求函数的单调递增区间;
(2)在△ABC中,角A,B,C所对的边长分别为a,b,c,当m>0时,若,
,△ABC的面积为
,求边长a的值.
(本小题满分12分)
已知函数在点
处的切线方程是
,其中
是自然对数的底数.
(1)求实数a、b的值;
(2)求函数在区间
上的值域.
(本小题满分12分)已知向量,
,
,且
.
(1)求;
(2)设向量与
的夹角为
,求
的值.
(本小题满分12分)
在各项均为正数的等比数列中,
,且
,
,
成等差数列.
(1)求等比数列的通项公式;
(2)若数列满足
,求数列
的前n项和
的最大值.
已知函数f(x)=+lnx(a>0)
(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[,2]上的最大值和最小值.