已知命题p:函数f(x)=x2+ax-2在[-1,1]内有且仅有一个零点.命题q:x2+3(a+1)x+2≤0在区间[,
]内恒成立.若命题“p且q”是假命题,求实数a的取值范围.
已知命题P:函数y=loga(1-2x)在定义域上单调递增;命题Q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立.若P∨Q是真命题,求实数a的取值范围.
设命题p:函数f(x)=lg(ax2-4x+a)的定义域为R;命题q:不等式2x2+x>2+ax,在x∈(-∞,-1)上恒成立,如果命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.
已知集合P={x|x2-8x-20≤0},S={x||x-1|≤m}.
(1)若(P∪S)⊆P,求实数m的取值范围;
(2)是否存在实数m,使得“x∈P”是“x∈S”的充要条件?若存在,求出m的取值范围;若不存在,请说明理由.
已知集合A={y|y=x2-x+1,x∈[
,2]},B={x|x+m2≥1};命题p:x∈A,命题q:x∈B,并且命题p是命题q的充分条件,求实数m的取值范围.