△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于E、F,给出以下四个结论:
①AE=CF
②△EPF是等腰直角三角形
③EF=AP
④S四边形AEPF= S△ABC
当∠EPF在△ABC内绕P旋转时(点E不与A、B重合)则上述结论始终正确的有( )
A.1个 B.2个 C.3个 D.4个
4(2x+3)=9(1-x)-5(x-2)
如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为,若∆ABC固定不动,∆AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n
(1)请在图1中找出两对相似而不全等的三角形,并选取其中一对证明它们相似;
(2)根据图1,求m与n的函数关系式,直接写出自变量n的取值范围;
(3)以∆ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2). 旋转∆AFG,使得BD=CE,求出D点的坐标,并通过计算验证;
(4)在旋转过程中,(3)中的等量关系是否始终成立,若成立,请证明,若不成立,请说明理由.