已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣
x2+mx+n经过点A和点C.
(1)求此抛物线的解析式;
(2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.
如图,在平面直角坐标系xOy中,矩形ABCD的边AD=3,A(,0),B(2,0),
直线y=kx+b经过B,D两点.
(1)求直线y=kx+b的解析式;
(2)将直线y=kx+b平移,若它与矩形有公共点,直接写出b的取值范围.
列方程解应用题:
A地区2011年公民出境旅游总人数约600万人,2013年公民出境旅游总人数约864万人,若2012年、2013年公民出境旅游总人数逐年递增,请解答下列问题:
(1)求2012、2013这两年A地区公民出境旅游总人数的年平均增长率;
(2)如果2014年仍保持相同的年平均增长率,请你预测2014年A地区公民出境旅游总人数约多少万人?
摆棋子游戏:现有4个棋子A,B,C,D,要求棋子A必须摆放在第一位置,其余3个随机摆放在第二、三、四的位置.
(1)请你列举出所有摆放的可能情况;
(2)求出棋子C摆放在偶数位置的概率.
如图,直线y=kx﹣2与x轴交于点A(1,0),与y轴交于点B,若直线AB上的点C在第一象限,且S△BOC=3,求点C的坐标.