某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t后甲、乙两遥控车与B处的距离分别为,
,则
,
与t的函数关系如图,试根据图象解决下列问题:
(1)填空:乙的速度= 米/分;
(2)写出与t的函数关系式;
(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?
工商银行为改进在上下班高峰的服务水平,随机抽样调查了部分该行顾客在上下班高峰时从开始排队到办理业务所用的时间t(单位:分).
下面是这次调查统计分析得到的频数分布表和频数分布直方图.
分组 |
频数 |
频率 |
|
一组 |
0<t≤5 |
10 |
0.1 |
二组 |
5<t≤10 |
0.3 |
|
三组 |
10<t≤15 |
25 |
0.25 |
四组 |
15<t≤20 |
20 |
|
五组 |
20<t≤25 |
15 |
0.15 |
合计 |
1.00 |
在上表中填写所缺数据
补全频数分布直方图
据调查顾客对服务质量的满意程度与所用时间t的关系如下:
所用时间t |
顾客满意程度 |
0<t≤10 |
比较满意 |
10<t≤15 |
基本满意 |
t>15 |
比较差 |
请结合频数分布表和频数分布直方图回答:本次调查中,处于中位数的顾客对服务质量的满意程度为,顾客从开始排队到办理业务所用的时间平均为
分钟,用以上调查结果来判断工商银行全天的服务水平合理吗?为什么?
如图,在□ABCD的对角线AC 上取两点E和F,若AE=CF.
求证:∠AFD=∠CEB.
解不等式组:并写出其所有自然数解
解方程:
化简.