如图,在梯形ABCD中,AB∥CD,∠BAD=90°,以AD为直径的半圆O与BC相切.
(1)求证:OB⊥OC;
(2)若AD=12,∠BCD=60°,⊙O1与半⊙O外切,并与BC、CD相切,求⊙O1的面积.
为实施“农村留守儿童关爱计划”,某校对全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名,2名,3名,4名,5名,6名共六种情况,并制成如下两幅不完整的统计图。
全校留守儿童班级数扇形统计图全校留守儿童人数条形统计图
(1).求该校平均每班有多少留守儿童?并将条形补全。
(2).某爱心人士,决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名儿童来自同一班级的概率。
已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E。
求证:(1)△BFC≌△DFC;(2)AD=DE
阅读以下材料:
对于三个数,用
表示这三个数的平均数,用
表示这三个数中最小的数.例如:
;
;
解决下列问题:
(1)填空:;
(2)①如果,求
;
②根据①,你发现了结论:
“如果,那么(填
的大小关系)”.
③运用②的结论,填空:
若,则
.
(3)填空:的最大值为.
如图,二次函数的图像交
轴于
,交
轴于
,过
画直线。
(1)求二次函数的解析式;
(2)若点P是抛物线上的动点,点Q是直线上的动点,请判断是否存在以P、Q、O、C为顶点的四边形为平行四边形,若存在,请求出点Q的坐标;若不存在,请说明理由;
(3)在轴右侧的点
在二次函数图像上,以
为圆心的圆与直线
相切,切点为
。且△CHM∽△AOC(点
与点
对应),求点
的坐标。
某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的销售和生产进行了调研,结果如下:一件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图1);一件商品的成本Q(元)与时间t(月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图2).
(1)一件商品在3月份出售时的利润是多少元?(利润=售价-成本)
(2)求图2中表示一件商品的成本Q(元)与时间t(月)之间的函数关系式;
(3)你能求出3月份至7月份一件商品的利润W(元)与时间t(月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30000件,请你计算一下该公司在一个月内最少获利多少元?