(1)解方程:.
(2)解不等式组:
计算:
(1)(-2)2-(2-)0+2·tan45°;
(2)先将·(1-
)化简,然后请自选一个你喜欢的x值,再求原式的值.
如图,在矩形ABCD中,AB=6cm,BC=8cm.如果点E由点B出发沿BC方
向向点C匀速运动,同时点F由点D出发沿DA方向向点A匀速运动,它们的速度分别为2cm/s和1cm/s.FQ⊥BC,分别交AC、BC于点P和Q,设运动时间为t(s)(0<t<4).
(1)连结EF、DQ,若四边形EQDF为平行四边形,求t的值;
(2)连结EP,设△EPC的面积为ycm2,求y与t的函数关系式,并求y的最大值;
(3)若△EPQ与△ADC相似,请直接写出t的值.
如图,AB为半圆O的直径,点C在半圆上,CD⊥AB于点D,连结BC,作∠BCP=∠BCD,CP交AB延长线于点P.
(1)求证:PC是半圆O的切线;
(2)求证:PC2=PB•PA;
(3)若PC=2,tan∠BCD=,求
的长.
如图,抛物线与
轴交于A(﹣2,0),B(6,0)两点.
(1)求该抛物线的解析式;
(2)求该抛物线的对称轴以及顶点坐标;
(3)点P为y轴右侧抛物线上一个动点,若S△PAB=32,求出此时P点的坐标.