(本小题满分12分)编号分别为的
名篮球运动员在某次篮球比赛中的得分记录如下:
(1)完成如下的频率分布表:
得分区间 |
频数 |
频率 |
![]() |
3 |
![]() |
![]() |
|
|
![]() |
|
|
合计 |
![]() |
![]() |
(2)从得分在区间内的运动员中随机抽取
人 , 求这
人得分之和大于
的概率.
(本小题满分12分)最近,李师傅一家三口就如何将手中的10万块钱投资理财,提出了三种方案:
第一种方案:李师傅的儿子认为:根据股市收益大的特点,应该将10万块钱全部用来买股票. 据分析预测:投资股市一年可能获利40%,也可能亏损20%.(只有这两种可能),且获利的概率为.
第二种方案:李师傅认为:现在股市风险大,基金风险较小,应将10万块钱全部用来买基金. 据分析预测:投资基金一年后可能获利20%,可能损失10%,也可能不赔不赚,且这三种情况发生的概率分别为.
第三种方案:李师傅妻子认为:投入股市、基金均有风险,应该将10万块钱全部存入银行一年,现在存款年利率为4%,存款利息税率为5%.
针对以上三种投资方案,请你为李师傅家选择一种合理的理财方法,并说明理由.
(本小题满分12分)
设锐角三角形的内角
的对边分别为
,且
.
(Ⅰ)求的大小;
(Ⅱ)求的取值范围.
已知,,
,
⑴当时, 讨论
的单调性、极值;
⑵当时,求证:
成立;
⑶是否存在实数,使
时,
的最小值是3,若存在,求出
的值;若不存在,说明理由.
已知椭圆(a>b>0)
(1)当椭圆的离心率,一条准线方程为x=4 时,求椭圆方程;
(2)设是椭圆上一点,在(1)的条件下,求
的最大值及相应的P点坐标。
(3)过B(0,-b)作椭圆(a>b>0)的弦,若弦长的最大值不是2b,求椭圆离心率的取值范围。
已知双曲线,顺次连接其实轴、虚轴端点所得四边形的面积为8,
(1)求双曲线焦距的最小值,并求出焦距最小时的双曲线方程;
(2)设A、B是双曲线上关于中心对称的两点,P是双曲线上另外一点,若直线PA、PB的斜率乘积等于,求双曲线方程。