游客
题文

在平面直角坐标系中,抛物线与x轴的两个交点分别为A(-3,0),B(1,0),过顶点C作CH⊥x轴于点H.

(1)a=       ,b=       ,顶点C的坐标为        
(2)在轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由.
(3)若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标.

科目 数学   题型 解答题   难度 较难
知识点: 相似多边形的性质 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

画一条数轴,并在数轴上画出表示下列各数的点,再将它们按从小到大的顺序用“<”连接起来.
, 0, -|-2.5|, -(-3), 1.5

如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,①猜想 DE与AB的关系?并加以证明。②若P是AB延长线一点,Q为BC一点,其他条件不变,结论成吗?画图并证明

(友情引导:若不知道,你可以动手去量发现结论。若不会,P是动点,你可以把P运动到特殊的地方,发现现在可利用什么性质?接下来证明。发现缺少什么?就补什么。若还不会,你能发现有线段相等吗?尝试证明,你会有惊喜。)

如图,OC平分∠AOB,点D,E分别在OA,OB上,点P在OC上且有PD=PE.求证:∠PDO =∠PEB.

如图,BE⊥AC、CF⊥AB于点E、F,BE与CF交于点D,DE=DF,连结AD。

求证:(1)∠FAD=∠EAD
(2)BD="CD"

如图在四边形ABCD中,AB=AD,∠ABC=∠ADC,求证BC=DC.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号