某射击运动员在相同条件下的射击160次,其成绩记录如下:
射击次数 |
20 |
40 |
60 |
80 |
100 |
120 |
140 |
160 |
射中9环以上的次数 |
15 |
33 |
|
63 |
79 |
97 |
111 |
130 |
射中9环以上的频率 |
0.75 |
0.83 |
0.80 |
0.79 |
0.79 |
|
0.79 |
0.81 |
(1)根据上表中的信息将两个空格的数据补全(射中9环以上的次数为整数,频率精确到0.01);
(2)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1),并简述理由.
结合数轴与绝对值的知识回答下列问题:
(1)数轴上表示4和1的两点之间的距离是_______ ;表示-3和2两点之间的距离是_____;一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.如果表示数a和-2的两点之间的距离是3,那么a= ______
(2)若数a表示数轴上的整数点,当a取何值时,|a+1|+|a-2|的值最小,最小为多少?
(1)如图4×4的方格,每个小格的顶点叫做格点,若每个小正方形边长为1单位,请在方格中作一个正方形,同时满足下列两个条件:
①所作的正方形的顶点,必须在方格上:
②所作正方形的面积为8个平方单位
(2)在数轴上表示实数(保留作图痕迹)
一座楼梯的示意图如图所示,要在楼梯上铺一条地毯.
(1)地毯至少需多少长?(用关于a,h的代数式表示)
(2)若楼梯的宽为b,则地毯的面积为多少?
(3)当a=5m,b=1.2m,h=3m时,则地毯的面积是多少m2
把下列各数填在相应的表示集合的大括号内:
-2 ,π,,
,
,-0.3,1.7,
,0 , 1.1010010001…(每两个1之间依次多一个0)
整数{……}
负分数{……}
无理数{……}
观察下列等式:
第1个等式:a1=;
第2个等式:a2=;
第3个等式:a3=;
第4个等式:a4==
×(
-
);
…
请解答下列问题:
(1)按以上规律列出第5个等式:a5= = ;
(2)用含有n的代数式表示第n个等式:an= = (n为正整数);
(3)求a1+a2+a3+a4+…+a100的值.