为了研究过山车的原理,物理小组提出了下列的设想:取一个与水平方向夹角为37°、长为L=2.0m的粗糙的倾斜轨道AB,通过水平轨道BC与竖直圆轨道相连,出口为水平轨道DE,整个轨道除AB段以外都是光滑的。其中AB与BC轨道以微小圆弧相接,如图所示。一个质量为2kg的小物块以初速度v0=4.0m/s,从某一高处水平抛出,恰从A点无碰撞地沿倾斜轨道滑下。已知物块与倾斜轨道AB的动摩擦因数μ=0.5(g取10m/s2,sin37°=0.6,cos37°=0.8):
(1)求小物块的抛出点和A点的高度差;
(2)求小物块沿着轨道AB运动的过程中克服摩擦力所做的功;
(3)为了让小物块能沿着轨道运动,并从E点飞出,则竖直圆轨道的半径应该满足什么条件?
如图所示,P是一颗地球同步卫星,已知球半径为R,地球表面处的重力加速度为R,地球自转周期为T。
(1)设地球同步卫星对地球的张为2θ,求同步卫星的轨道半径r和sinθ的值。
(2)要使一颗地球同步卫星能覆盖赤道上,A,B之间的区域,∠AOB=,则卫星可定位在轨道某段圆弧上,求该段圆弧的长度l(用r和θ表示)
如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg,AO部分粗糙且长L=2m,动摩擦因数=0.3,OB部分光滑。另一小物块a.放在车的最左端,和车一起以Vo=4m/s的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连。已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内。a、b两物块视为质点质量均为m=lkg,碰撞时间极短且不粘连,碰后一起向右运动。(取g="10" m/s2)求:
(1)物块a与b碰后的速度大小;
(2)当物块a相对小车静止时小车右端B到挡板的距离;
(3)当物块a相对小车静止时在小车上的位置到O点的距离。
如图所示,虚线MO与水平线PQ相交于O,二者夹角θ=30°,在MO左上侧存在电场强度为E、方向竖直向下的匀强电场,MO右下侧某个区域存在磁感应强度为B、垂直纸面向外的匀强磁场(图中未画出),磁场的一条边界在直线MO上,现有一质量为m、电量为+q的带电粒子在纸面内以速度v=,且方向与MO成
角从M点射入磁场,又向左从MO上的D点(图中未画出)射出磁场进入电场,最后到达O点,不计粒子重力。求:
(1)MD的距离L;
(2)粒子从M点运动到O点所用的时间
(3)磁场区域的最小面积。
如图甲所示,一倾角θ=30°的斜面固定在水平地面上,现有一木块以初速度vo=4m/s的速度沿斜面上滑,电脑通过测速仪画出木块从开始上滑至最高点的v-t图线,如图乙所示。(g取l0m/s2)求:
甲
(1)木块与斜面间的动摩擦因数;
(2)木块回到出发点时的速度大小v。
如图所示,传送带与地面成夹角θ=37°,以10m/s的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5kg的物体,它与传送带间的动摩擦因数μ=0.5,已知传送带从A→B的长度L=16m,则物体从A到B需要的时间为多少?