如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连接AG,点E、F分别在AG上,连接BE、DF,∠1=∠2,∠3=∠4.
(1)证明:△ABE≌△DAF;
(2)若∠AGB=30°,求EF的长.
某水果店在两周内,将标价为10元 斤的某种水果,经过两次降价后的价格为8.1元 斤,并且两次降价的百分率相同.
(1)求该种水果每次降价的百分率;
(2)从第一次降价的第1天算起,第 天( 为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元 斤,设销售该水果第 (天)的利润为 (元),求 与 之间的函数关系式,并求出第几天时销售利润最大?
时间 (天) |
|
|
|
售价(元 斤) |
第1次降价后的价格 |
第2次降价后的价格 |
|
销量(斤) |
|
|
|
储存和损耗费用(元) |
|
|
(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?
风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在 处测得塔杆顶端 的仰角是 ,沿 方向水平前进43米到达山底 处,在山顶 处发现正好一叶片到达最高位置,此时测得叶片的顶端 、 、 在同一直线上)的仰角是 .已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高 为10米, , ,求塔杆 的高.(参考数据: , , ,
解分式方程: .
计算: .
抛物线 与 轴交于 , ,与 轴交于 .
(1)若 ,求抛物线的解析式,并写出抛物线的对称轴;
(2)如图1,在(1)的条件下,设抛物线的对称轴交 轴于 ,在对称轴左侧的抛物线上有一点 ,使 ,求点 的坐标;
(3)如图2,设 , 轴于 ,在线段 上是否存在点 ,使 ?若存在,求 的取值范围;若不存在,请说明理由.