下图是某装置的垂直截面图,虚线A1A2是垂直截面与磁场区边界面的交线,匀强磁场分布在A1A2的右侧区域,磁感应强度B=0.4T,方向垂直纸面向外,A1A2与垂直截面上的水平线夹角为45°。A1A2的左侧,固定的薄板和等大的挡板均水平放置,它们与垂直截面交线分别为S1、S2,相距L=0.2m。在薄板上P处开一小孔,P与A1A2线上点D的水平距离为L。在小孔处装一个电子快门。起初快门开启,一旦有带正电微粒通过小孔,快门立即关闭,此后每隔T=3.0×10-3s开启一次并瞬间关闭。从S1S2之间的某一位置水平发射一速度为v0的带正电微粒,它经过磁场区域后入射到P处小孔。通过小孔的微粒与档板发生碰撞而反弹,反弹速度大小是碰前的0.5倍。(忽略微粒所受重力影响,碰撞过程无电荷转移。已知微粒的荷质比。只考虑纸面上带电微粒的运动)求:
(1)满足题目的微粒在磁场中运动的半径的条件?
(2)经过一次反弹直接从小孔射出的微粒,其初速度v0应为多少?
(3)上述(2)问中微粒从最初水平射入磁场到第二次离开磁场的时间。
如图所示,绝缘光滑水平面上放置有不带电的质量为mA=2kg的滑块A和质量为mB=1kg,带电荷量q=+5C的滑块B。A、B之间夹有一压缩的绝缘弹簧(与A、B不连接),弹簧储存的弹性势能为Ep=12J。水平面与传送带最左端M相切,传送带的长度L=2m,M点的右边存在水平向右的场强为E=2V/m的匀强电场,滑块B与传送带的动摩擦因数μ=0.2。现在自由释放A、B,B滑上传送带之前已经与弹簧脱离,(g="10" m/s2),求:
(1)滑块A、B脱离弹簧时A、B的速度大小;
(2)若传送带顺时针转动,试讨论滑块B运动到传送带N端的动能Ek与传送带的速度v的关系。
如图(甲)所示,某粒子源向外放射出一个α粒子,粒子速度方向与水平成30°角,质量为m,电荷量为+q。现让其从粒子源射出后沿半径方向射入一个磁感应强度为B、区域为圆形的匀强磁场(区域Ⅰ)。经该磁场偏转后,它恰好能够沿y轴进入下方的平行板电容器,并运动至N板且恰好不会从N板的小孔P射出电容器。已知平行板电容器与一边长为L的正方形单匝导线框相连,其内有垂直框面的磁场(区域Ⅱ),磁场变化如图(乙)所示。不计粒子重力,求:
(1)磁场区域Ⅱ磁场的方向及α粒子射出粒子源的速度大小;
(2)圆形磁场区域的半径;
(3)α粒子在磁场中运动的总时间。
如图,两根长均为2L的圆柱形绝缘细管,用很短的一段内壁光滑的弯管平滑连接成管道ABC,管道固定于竖直平面内,其中 AC沿水平方向,。一柔软匀质绝缘细绳置于管道AB内,细绳的右端刚好绕过管道B处连接一小球(直径略小于管道内径),系统处于静止状态。已知绳和小球的质量均为m、与细管的动摩擦因数均
;细绳长L,小球带电量为+q,整个系统置于竖直向下、场强
的匀强电场中,重力加速度为g。现对小球施加一沿BC管道向下的拉力。
(1)当小球滑动时,拉力大小为F,求此时小球的加速度大小a;
(2)求小球从开始运动到下滑过程,系统改变的势能△E;
(3)拉力至少需对小球做多少功,才能使整条细绳离开管口C?
如图是某屏蔽高能粒子辐射的装置,铅盒左侧面中心O有一放射源可通过铅盒右侧面的狭缝MQ向外辐射粒子,铅盒右侧有一左右边界平行的匀强磁场区域。过O的截面MNPQ位于垂直磁场的平面内,OH垂直于MQ。已知
α粒子质量m=6.64×10-27kg,电量q=3.20×10-19C,速率v=1.28×107m/s;磁场的磁感应强度B="0.664" T,方向垂直于纸面向里;粒子重力不计,忽略粒子间的相互作用及相对论效应,sin 530 ="0." 8,cos 530=0.60
(1)求垂直于磁场边界向左射出磁场的粒子在磁场中运动的时间t;
(2)若所有粒子均不能从磁场右边界穿出,达到屏蔽作用,求磁场区域的最小宽度d;
(3)求满足(2)条件的所有粒子在磁场中运动的最长时间和最短时间的比值tmax:tmin。
2014年初,“雪龙号”破冰船成功营救俄罗斯科考人员后被浮冰围困。脱困方式为:接触重
冰区前,船从静止开始做匀加速直线运动,运动距离l到达重冰区,此时速度为v,且恰好达到额定功率P,然后冲上重冰区冰面,利用船头的冰刀和船体把冰压碎,最终脱困。已知船总质量为m,求:
(1)船接触重冰区前的加速度大小a;
(2)船刚接触重冰区时所受的阻力大小f.