某州产苦荞茶、青花椒、野生蘑菇,为了让这些珍宝走出大山,走向世界,州政府决定组织21辆汽车装运这三种土特产共120吨,参加全国农产品博览会。现有A型、B型、C型三种汽车可供选择。已知每种型号汽车可同时装运2种土特产,且每辆车必须装满。根据下表信息,解答问题。
(1)设A型汽车安排辆,B 型汽车安排
辆,求
与
之间的函数关系式。
(2)如果三种型号的汽车都不少于4辆,车辆安排有几种方案?并写出每种方案。
(3)为节约运费,应采用(2)中哪种方案?并求出最少运费。
化简:(每小题4分,共8分)
(1)
(2)
如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与x轴相交于点A(-3,0),与y轴交于点B,且与正比例函数y=的图象交点为C(m,4)求:
(1)一次函数y=kx+b的解析式;
(2)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,直接写出点D的坐标。
(3)在x轴上求一点P使△POC为等腰三角形,请直接写出所有符合条件的点P的坐标.
已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.
(1)如图1, 连结DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断:“在旋转的过程中线段DF与BF的长始终相等.”是否正确,若正确请说明理由,若不正确请举反例说明;
(2)若将正方形AEFG绕点A按顺时针方向旋转, 连结DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以图2为例说明理由.
甲、乙两车分别从相距200千米的A、B两地同时出发相向而行,甲到B地后立即返回,乙到A地后停止行驶,下图是它们离各自出发地的距离(km)与行驶时间
(h)之间的函数图象.
(1)请直接写出甲离出发地A的距离(km)与行驶时间
(h)之间的函数关系式,并写出自变量
的取值范围;
(2)求出函数图像交点M的坐标并指出该点坐标的实际意义;
(3)求甲、乙两车从各自出发地驶出后经过多长时间相遇.
某医药研究所开发了一种新药,在试验时发现,如果成人按规定剂量服用2小时时血液中含药量最高,达每毫升6微克,接着逐步衰减,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y(微克)随服药后时间x(小时)的变化如图所示,当成人按规定剂量服药后。
⑴分别求出x<2与x>2时y与x的函数关系式
⑵如果每毫升血液中含药量为或3微克以上时,在治疗时是有效的,那么这个有效时间是多长?