(本小题满分13分)已知椭圆,其中
为左、右焦点,且离心率
,直线
与椭圆交于两不同点
.当直线
过椭圆C右焦点F2且倾斜角为
时,原点O到直线
的距离为
.
(1)求椭圆C的方程;
(2)若,当
面积为
时,求
的最大值.
(本小题满分12分)设,曲线
在点
处的切线与直线
垂直.
(1)求的值;
(2)若恒成立,求
的取值范围;
(3)求证:.
(本小题满分12分)设椭圆C:的左焦点为F,过点F的直线与椭圆C相交于A,B两点,直线l的倾斜角为60o,
.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)如果|AB|=,求椭圆C的方程.
(本小题满分12分)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.
(Ⅰ)证明:CD⊥平面PAE;
(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.
(本小题满分12分)某地宫有三个通道,进入地宫的每个人都要经过一扇智能门。首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1小时走出地宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门。再次到达智能门时,系统会随机打开一个你未到过的通道,直至走完地宫为止。令表示走出地宫所需的时间。
(1)求的分布列;
(2)求的数学期望。
(本小题满分12分)在△ABC中,a, b, c分别为内角A, B, C的对边,且,
(Ⅰ)求A的大小;
(Ⅱ)求的最大值.