(文科)已知点为双曲线
(
为正常数)上任一点,
为双曲线的右焦点,过
作右准线的垂线,垂足为
,连接
并延长交
轴于
.
(1)线段的中点
的轨迹
的方程;
(2)设轨迹与
轴交于
两点,在
上任取一点
,直线
分别交
轴于
两点.求证:以
为直径的圆过两定点.
(本题13分)
已知椭圆G:的离心率为
,右焦点为
,斜率为1的直线
与椭圆G交于A,B两点,以AB为底的等腰三角形顶点为P(-3,2)
(1)求椭圆G的方程
(2)求PAB的面积
(本题13分)数列为等比数列,公比为
,
(1)求数列的通项公式
(2)若,求数列
的前
项和
(本题12分)
在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥面ABCD, AP="AB," BP=BC=2,E,F分别是PB,PC的中点
(1)证明:EF面PAD
(2)求三棱锥E-ABC的体积
(本题12分)
为调查某地区老年人是否需要志愿者提供帮助用简单随机抽样方法从该地区调查了500位老年人,结果如下:
男 |
女 |
|
需要 |
40 |
30 |
不需要 |
160 |
270 |
(1)估计该地区老年人中需要志愿者提供帮助的老年人的比例
(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
附:
![]() |
0.050 |
0.010 |
0.001 |
![]() |
3.841 |
6.635 |
10.828 |
.(本题12分)函数
(1)求函数的最小正周期
(2)求函数的最大值及
取得最大值时
的取值集合