如图所示,ABCD是一块边长为100 m的正方形地皮,其中AST是一半径为90 m的扇形小山,其余部分都是平地.一开发商想在平地上建一个矩形停车场,使矩形的一个顶点P在上,相邻两边CQ、CR落在正方形的边BC、CD上.求矩形停车场PQCR面积的最大值和最小值.
已知公差大于零的等差数列{an}的前n项和为Sn,且满足:a3·a4=117,a2+a5=22.
(1)求通项an;
(2)若数列{bn}满足bn=,是否存在非零实数c使得{bn}为等差数列?若存在,求出c的值;若不存在,请说明理由.
设Sn是等差数列{an}的前n项和,已知S3,
S4的等比中项为
S5;
S3,
S4的等差中项为1,求数列{an}的通项公式.
等差数列{an}的奇数项的和为216,偶数项的和为192,首项为1,项数为奇数,求此数列的末项和通项公式.
已知数列{an}中,a1=,an=2-
(n≥2,n∈N*),数列{bn}满足bn=
(n∈N*).
(1)求证:数列{bn}是等差数列;
(2)求数列{an}中的最大项和最小项,并说明理由.
等差数列{an}中,a1<0,S9=S12,该数列前多少项的和最小?