如图,在Rt△ABC中,∠C=90°,AC=BC=6,点D为AC中点,点E为边AB上一动点,点F为射线BC上一动点,且∠FDE=90°.
(1)当DF∥AB时,连接EF,求∠DEF的余切值;
(2)当点F在线段BC上时,设AE=x,BF=y,求y关于x的函数关系式,并写出x的取值范围;
(3)连接CE,若△CDE为等腰三角形,求BF的长.
“五一”期间,为了满足广大人民的消费需求,某商店计划用160 000元购进一批家电,这批家电的进价和售价如下表:若全部资金用来购买彩电和洗衣机共100台,则商家可以购买彩电和洗衣机各几台?
若在现有资金160 000元允许的范围内,购买上表中三类家电共100台,其中彩电台数和冰箱台数相同,且购买洗衣机的台数不超过购买彩电的台数,请你算一算,共有几种进货方案?哪种进货方案能使商店销售完这批家电后获得的利润最大?并求出最大利润.(利润=售价-进价)
如图,已知函数的图象与直线
相交于点A(1,3)、B(
,1)两点,
写出
、
、
的值;
求不等式
的解(请直接写出答案);
求△AOB的面积。
某文具店老板第一次用1 000元购进一批文具,很快销售完毕,第二次购进时发现每件文具的进价比第一次上涨了2.5元,老板用2 500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕,两批文具的售价均为每件15元.第二次购进多少件文具?
文具店老板在这两笔生意中共盈利多少元?
如图,在矩形中,点
分别在边
上,BE⊥EF,
ΔABE与ΔDEF相似吗?请说明理由.
若
,求CF的长.
先化简,再求值:,(其中x在-2和1中任选一个)