如图,∠AOB=∠COD=900,OC平分∠AOB,∠BOD=3∠DOE,试求∠COE的度数。
(1) 解方程:﹣4x-5=0;
(2) 解不等式组
(1)计算:+2sin30°-
(2)计算:
动手实验:利用矩形纸片(如图1)剪出一个正六边形纸片;再利用这个正六边形纸片做一个无盖的正六棱柱(棱柱底面为正六边形),如图2.
(1)做一个这样的正六棱柱所需最小的矩形纸片的长与宽的比为多少?
(2)在(1)的条件下,当矩形的长为2a时,要使无盖正六棱柱侧面积最大,正六棱柱的高为多少?并求此时矩形纸片的利用率为多少?(矩形纸片的利用率=.)
如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点
(1)求这条抛物线的解析式;
(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;
我市为创建“国家级森林城市”,政府决定对江边一处废弃荒地进行绿化,要求栽植甲、乙两种不同的树苗共6000棵,且甲种树苗不得多于乙种树苗.某承包商以26万元的报价中标承包了这项工程.根据调查及相关资料表明:移栽一棵树苗的平均费用为8元,甲、乙两种树苗的购买价及成活率如表:
品种 |
购买价(元/棵) |
成活率 |
甲 |
20 |
90% |
乙 |
32 |
95% |
设购买甲种树苗x棵,承包商获得的利润为y元.请根据以上信息解答下列问题:
(1)设y与x之间的函数关系式,并写出自变量x的取值范围;
(2)承包商要获得不低于中标价16%的利润,应如何选购树苗?
(3)政府与承包商的合同要求,栽植这批树苗的成活率必须不低于93%,否则承包商出资补栽;若成货率达到94%以上(含94%),则政府另给予工程款总额6%的奖励,该承包商应如何选购树苗才能获得最大利润?最大利润是多少?