先化简,再选取一个你喜欢的数代入求值.
用1块 型钢板可制成2块 型钢板和1块 型钢板;用1块 型钢板可制成1块 型钢板和3块 型钢板.现准备购买 、 型钢板共100块,并全部加工成 、 型钢板.要求 型钢板不少于120块, 型钢板不少于250块,设购买 型钢板 块 为整数).
(1)求 、 型钢板的购买方案共有多少种?
(2)出售 型钢板每块利润为100元, 型钢板每块利润为120元.若将 、 型钢板全部出售,请你设计获利最大的购买方案.
某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,随机抽取 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.
学生读书数量统计表
阅读量 本 |
学生人数 |
1 |
15 |
2 |
|
3 |
|
4 |
5 |
(1)直接写出 、 、 的值;
(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?
解方程组:
如图1,抛物线 与 轴交于 、 两点,与 轴交于点 .已知点 的坐标为 ,点 为坐标原点, ,抛物线 的顶点为 .
(1)求出抛物线 的解析式,并写出点 的坐标;
(2)如图2,将抛物线 向下平移 个单位,得到抛物线 ,设 与 轴的交点为 、 ,顶点为 ,当△ 是等边三角形时,求 的值:
(3)在(2)的条件下,如图3,设点 为 轴正半轴上一动点,过点 作 轴的垂线分别交抛物线 、 于 、 两点,试探究在直线 上是否存在点 ,使得以 、 、 为顶点的三角形与 全等,若存在,直接写出点 , 的坐标:若不存在,请说明理由.
我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:
例:将 化为分数形式
由于 ,设 ①
则 ②
② ①得 ,解得 ,于是得 .
同理可得 ,
根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)
(基础训练)
(1) , ;
(2)将 化为分数形式,写出推导过程;
(能力提升)
(3) , ;
(注 ,
(探索发现)
(4)①试比较 与1的大小: 1(填“ ”、“ ”或“ ”
②若已知 ,则 .
(注