如图,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段CP的中点绕点P按顺时针方向旋转90°得点D,点D随点P的运动而运动,连接DP、DA.
(1)请用含t的代数式表示出点D的坐标;
(2)求t为何值时,△DPA的面积最大,最大为多少?
(3)在点P从O向A运动的过程中,△DPA能否成为直角三角形?若能,求t的值.若不能,请说明理由;
(4)请直接写出随着点P的运动,点D运动路线的长.
黄梅县某中学为促进课堂教学,提高教学质量,对七年级学生进行了一次“你最喜欢的课堂教学方式”的问卷调查.根据收回的答卷,学校绘制了“频率分布表”和“频数分布条形图”.请你根据图表中提供的信息,解答下列问题.
(1)补全“频率分布表”;
(2)在“频数分布条形图”中,将代号为“4”的部分补充完整;
(3)你最喜欢以上哪一种教学方式或另外的教学方式,请提出你的建议,并简要说明理由.(字数在20字以内)
如图,在平面直角坐标系中,
,
,
.
(1)的面积是.
(2)在下图中画出向下平移2个单位,向右平移5个单位后的
.
(3)写出点的坐标.
推理填空:
如图,已知∠1 =∠2,∠B =∠C,可推得AB∥CD。理由如下:
∵∠1 =∠2(已知),且∠1 =∠4(),
∴∠2 =∠4(等量代换),
∴ CE∥BF().
∴∠=∠3().
又∵∠B =∠C(已知),
∴∠3 =∠B(等量代换),
∴ AB∥CD().
解不等式组,并将解集在数轴上表示出来:。
为支持抗震救灾,我市A、B两地分别向灾区捐赠物资100吨和180吨。需全部运往重灾区C、D两县,根据灾区的情况,这批赈灾物资运往C县的数量比运往D县的数量的2倍少80吨。
(1)求这批赈灾物资运往C、D两县的数量各是多少吨?
(2)设A地运往C县的赈灾物资为x吨(x为整数),若要B地运往C县的赈灾物资数量大于A地运往D县的赈灾物资数量的2倍,且要求B地运往D县的赈灾物资数量不超过63吨,则A、B两地的赈灾物资运往C、D两县的方案有几种?