如图,已知⊙O 中,AB为直径,CD为⊙O的切线,交AB的延长线于点D,∠D=30°。
⑴求∠A的度数;
⑵若点F在⊙O上,CF⊥AB,垂足为E,CF=,求图中阴影部分的面积.(结果保留
)
某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:
成绩分组 |
频数 |
频率 |
|
8 |
0.16 |
|
12 |
|
|
■ |
0.5 |
|
3 |
0.06 |
|
|
|
合计 |
■ |
1 |
(1)写出 , , 的值;
(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;
(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.
如图,在四边形 中, , 是 的中点, , , 于点 .
(1)求证:四边形 是菱形;
(2)若 , ,求 的长.
如图, 与 相切于点 ,过点 作 ,垂足为 ,交 于点 .连接 , ,并延长 交 于点 ,与 的延长线交于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的值.
杨老师为了了解所教班级学生课后复习的具体情况,对本班部分学生进行了一个月的跟踪调查,然后将调查结果分成四类: :优秀; :良好; :一般; :较差.并将调查结果绘制成以下两幅不完整的统计图.
请根据统计图解答下列问题:
(1)本次调查中,杨老师一共调查了 名学生,其中 类女生有 名, 类男生有 名;
(2)补全上面的条形统计图和扇形统计图;
(3)在此次调查中,小平属于 类.为了进步,她请杨老师从被调查的 类学生中随机选取一位同学,和她进行“一帮一”的课后互助学习.请求出所选的同学恰好是一位女同学的概率.
如图, 的对角线 , 相交于点 . , 是 上的两点,并且 ,连接 , .
(1)求证: ;
(2)若 ,连接 , ,判断四边形 的形状,并说明理由.