如图,△ABC中,∠ACB=90°,AC=6,BC=8.点P从A点出发沿A﹣C﹣B路径向终点运动,终点为B点;点Q从B点出发沿B﹣C﹣A路径向终点运动,终点为A点.点P和Q分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.问:点P运动多少时间时,△PEC与QFC全等?请说明理由.
如图,AB=DE,BE=CF,AB∥DE求证:∠A=∠D
先化简,再求值:,其中x=-1,y=2.
分解因式
在平面直角坐标系xoy中,边长为的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.
⑴当∠BAO=45°时,求点P的坐标;
⑵求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB的平分线上;
⑶当B点坐标为(0,1)时,求CD的解析式。
某公司每月付给销售人员的工资有两种方案.
方案一:没有底薪,只拿销售提成;
方案二:底薪加销售提成
(注:销售提成是指从销售每件商品得到的销售额中提取一定数量的费用).
设销售商品的数量(件),销售人员的月工资
(元).如图所示,
为方案一的函数图象,
为方案二的函数图象.从图中信息解答如下问题:
⑴求的函数函数关系式;
⑵求点A的坐标,并说出A点的实际意义;
⑶请问方案二中每月付给销售人员的底薪是多少元?
⑷如果该公司销售人员小丽的月工资要不低于1800元,那么小丽选用哪种方案最好?至少要销售商品多少件?