【改编】如图,有一个直角三角形ABC,∠ACB=90°,AC=10,BC=5,一条线段PQ=AB,P.Q两点分别在射线AC和过点A且垂直于AC的射线AX上运动,连接BQ,当ΔABC与ΔPQA全等时.BQ的长为( )
如图,在平面直角坐标系xOy中,AB在x轴上,AB=10,以AB为直径的⊙与y轴正半轴交于点C,连接BC、AC,CD是⊙
的切线,AD⊥CD于点D,tan∠CAD=
,抛物线
过A、B、C三点.
(1)求证:∠CAD=∠CAB;
(2)求抛物线的解析式;
(3)判断抛物线的顶点E是否在直线CD上,并说明理由.
某商店经销甲、乙两种商品. 现有如下信息:请根据以上信息,解答下列问题:
(1)甲、乙两种商品的进货单价各多少元?
(2)该商店平均每天卖出甲商品600件和乙商品400件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元. 在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?
如图,已知是
的直径,点
在
上,过点
的直线与
的延长线交于点
,
,
.
(1)求证:是
的切线;
(2)求证:;
(3)点是弧AB的中点,
交
于点
,若
,求
的值.
如图,一次函数的图象与反比例函数(x<0)的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0),A点的横坐标为-1.
(1)求一次函数的解析式;
(2)设函数(x>0)的图象与
(x<0)的图象关于y轴对称,在
(x>0)的图象上取一点P(P点的横坐标大于2),过P点作PQ⊥x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.
为实施“农村留守儿童关爱计划”,某校对全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成了如下两幅不完整的统计图:
(1)将该条形统计图补充完整.
(2)求该校平均每班有多少名留守儿童?
(3)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.