已知函数,若在定义域内存在
,使得
成立,则称
为函数
的局部对称点.
(1)若、
R且
,证明:函数
必有局部对称点;
(2)若函数在区间
内有局部对称点,求实数
的取值范围;
(3)若函数在R上有局部对称点,求实数
的取值范围.
设函数
(1)若关于x的不等式在
有实数解,求实数m的取值范围;
(2)设,若关于x的方程
至少有一个解,求p 的最小值.
(3)证明不等式:
已知方向向量为的直线l过椭圆
的焦点以及点(0,
),直线l与椭圆C交于 A 、B两点,且A、B两点与另一焦点围成的三角形周长为
。
(1)求椭圆C的方程
(2)过左焦点且不与x轴垂直的直线m交椭圆于M、N两点,
(O坐标原点),求直线m的方程
如图,四棱锥中,底面
为平行四边形,
,
,
⊥底面
.
(1)证明:平面平面
;
(2)若二面角为
,求
与平面
所成角的正弦值。
某高校在2012年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.
(1)分别求第3,4,5组的频率;
(2) 若该校决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试。
(ⅰ) 已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙恰有一人进入第二轮面试的概率;
(ⅱ) 学校决定在这已抽取到的6名学生中随机抽取2名学生接受考官L的面试,设第4组中有名学生被考官L面试,求
的分布列和数学期望.
若的图像与直线
相切,并且切点横坐标依次成公差为
的等差数列.
(1)求和
的值;
(2) ⊿ABC中,a、b、c分别是∠A、∠B、∠C的对边。若是函数
图象的一个对称中心,且a=4,求⊿ABC外接圆的面积。