如图所示,一个半径为R的透明球体放置在水平面上,一束蓝光从A点沿水平方向射入球体后经B点射出,最后射到水平面上的C点。已知OA=
,该球体对蓝光的折射率为
。则:
①它从球面射出时的出射角β为多少?
②若光在真空中的传播速度为c,那么,请推导出光从A点传播到C点所需时间t的表达式(用c,R表示)
一列简谐横波沿x轴正方向传播,周期为T=2s,t=0时刻的波形如图所示。此刻,波刚好传到处,求:坐标
处的质点,经多长时间第一次经过平衡位置向y轴负方向运动?
渔船常利用超声波来探测远处鱼群的方位,已知某超声波的频率为1.0×105 Hz,某时刻该超声波在水中传播的波动图象如图所示.
①从该时刻开始计时,画出x=7.5×10-3 m处质点做简谐运动的振动图象(至少一个周期).
②现测得超声波信号从渔船到鱼群往返一次所用的时间为4 s,求鱼群与渔船间的距离(忽略船和鱼群的运动).
能的转化与守恒是自然界普遍存在的规律,如:电源给电容器的充电过程可以等效为将电荷逐个从原本电中性的两极板中的一个极板移到另一个极板的过程. 在移动过程中克服电场力做功,电源的电能转化为电容器的电场能.实验表明:电容器两极间的电压与电容器所带电量如图所示.
(1)对于直线运动,教科书中讲解了由v-t图像求位移的方法.请你借鉴此方法,根据图示的Q-U图像,若电容器电容为C,两极板间电压为U,求电容器所储存的电场能.
(2)如图所示,平行金属框架竖直放置在绝缘地面上.框架上端接有一电容为C的电容器.框架上一质量为m、长为L的金属棒平行于地面放置,离地面的高度为h.磁感应强度为B的匀强磁场与框架平面相垂直.现将金属棒由静止开始释放,金属棒下滑过程中与框架接触良好且无摩擦.开始时电容器不带电,不计各处电阻.
求a. 金属棒落地时的速度大小
b. 金属棒从静止释放到落到地面的时间
(1)如图1所示,固定于水平面上的金属框架abcd,处在竖直向下的匀强磁场中。金属棒MN沿框架以速度v向右做匀速运动。框架的ab与dc平行,bc与ab、dc垂直。MN与bc的长度均为l,在运动过程中MN始终与bc平行,且与框架保持良好接触。磁场的磁感应强度为B。
a. 请根据法拉第电磁感应定律,推导金属棒MN中的感应电动势E;
b. 在上述情景中,金属棒MN相当于一个电源,这时的非静电力与棒中自由电子所受洛伦兹力有关。请根据电动势的定义,推导金属棒MN中的感应电动势E。
(2)为进一步研究导线做切割磁感线运动产生感应电动势的过程,现构建如下情景: 如图2所示,在垂直于纸面向里的匀强磁场中,一内壁光滑长为l的绝缘细管MN,沿纸面以速度v向右做匀速运动。在管的N端固定一个电量为q的带正电小球(可看做质点)。某时刻将小球释放,小球将会沿管运动。已知磁感应强度大小为B,小球的重力可忽略。在小球沿管从N运动到M的过程中,求小球所受各力分别对小球做的功。
如图所示,竖直平面内有无限长、不计电阻的两组平行光滑金属导轨,宽度均为L=0.5m,上方连接一个阻值R=1Ω的定值电阻,虚线下方的区域内存在磁感应强度B=2T的匀强磁场.完全相同的两根金属杆1和2靠在导轨上,金属杆与导轨等宽且与导轨接触良好,电阻均为r=0.5Ω.将金属杆1固定在磁场的上边缘(仍在此磁场内),金属杆2从磁场边界上方h0=0.8m处由静止释放,进入磁场后恰作匀速运动.(g取10m/s2)求:
(1)金属杆的质量m为多大?
(2)若金属杆2从磁场边界上方h1=0.2m处由静止释放,进入磁场经过一段时间后开始匀速运动.在此过程中整个回路产生了1.4J的电热,则此过程中流过电阻R的电量q为多少?
(3)金属杆2仍然从离开磁场边界h1=0.2m处由静止释放,在金属杆2进入磁场的同时由静止释放金属杆1,两金属杆运动了一段时间后均达到稳定状态,试求两根金属杆各自的最大速度.(已知两个电动势分别为E1、E2不同的电源串联时,电路中总的电动势E=E1+E2.)