已知某隧道截面积拱形为抛物线形,拱顶离地面10米,底部款20米.
(1)建立如图1所示的平面直角坐标系,使y轴为抛物线的对称轴,x轴在地面上.求这条抛物线的解析式;
(2)维修队对隧道进行维修时,为了安全,需要在隧道口搭建一个如图2所示的矩形支架AB-BC-CD(其中B、C两点在抛物线上,A、D两点在地面上),现有总长为30米的材料,那么材料是否够用?
(3)在(2)的基础上,若要求矩形支架的高度AB不低于5米,已知隧道是双向行车道,正中间用护栏隔开,则同一方向行驶的两辆宽度分别为4米,高度不超过5米的车能否并排通过隧道口?(护栏宽度和两车间距忽略不计)
(本小题8分)
关于x的一元二次方程有两个不相等的实数根.
(1)求k的取值范围.
(2)请选择一个k的负整数值,并求出方程的根
计算或化简:(本小题6分)
解下列方程(每题5分,共10分)
(1)
(2)(用配方法解)
如图①②,在平面直角坐标系中,边长为2的等边△CDE恰好与坐标系中的△OAB重合,现将△CDE绕边AB的中点G(G点也是DE的中点),按顺时针方向旋转180°到△C1DE的位置.
(1)求C1点的坐标;
(2)求经过三点O、A、C1的抛物线的解析式;
(3)如图③,⊙G是以AB为直径的圆,过B点作⊙G的切线与x轴相交于点F,求切线BF
的解析式;
(4)抛物线上是否存在一点M,使得.若存在,请求出点M的坐标;
若不存在,请说明理由.
(1)计算:如图①,直径为的三等圆⊙O
、⊙O
、⊙O
两两外切,切点分别为A、B、C ,求O
A的长(用含
的代数式表示).
(2)探索:若干个直径为的圆圈分别按如图10②所示的方案一和如图10③所示的方案二的方式排放,探索并求出这两种方案中
层圆圈的高度
和
(用含
、
的代数式表示).
(3)应用:现有长方体集装箱,其内空长为5米,宽为3.1米,高为3.1米.用这样的集装箱装运长为5米,底面直径(横截面的外圆直径)为0.1米的圆柱形钢管,你认为采用(2)中的哪种方案在该集装箱中装运钢管数最多?并求出一个这样的集装箱最多能装运多少根钢管?(≈1.73)