(本小题满分14分)如图,已知三棱锥A—BPC中,AP⊥PC, AC⊥BC,M为AB中点,D为PB中点, 且△PMB为正三角形.
(1)求证:DM∥平面APC;
(2)求证:平面ABC⊥平面APC;
(3)若BC=4,AB=20,求三棱锥D—BCM的体积.
(选修4-4:坐标系与参数方程)
已知直线的极坐标方程为
,圆
的参数方程为
为参数).
(1)请分别把直线和圆
的方程化为直角坐标方程;
(2)求直线被圆截得的弦长.
(选修4—2:矩阵与变换)
在平面直角坐标系xOy中,设曲线在矩阵
对应的变换作用下得到曲线
,求曲线
的方程.
(选修4—1:几何证明选讲)
如图,已知点为
的斜边
的延长线上一点,且
与
的外接圆相切,过点
作
的垂线,垂足为
,若
,
,求线段
的长.
已知函数,
.
(1)设.
① 若函数在
处的切线过点
,求
的值;
② 当时,若函数
在
上没有零点,求
的取值范围;
(2)设函数,且
,求证:当
时,
.
数列满足:
.
(1)求证:数列一定不是等比数列;
(2)若,求
最小值.