如图,一带有活塞的气缸通过底部的水平细管与一个上端开口的竖直管相连,气缸与竖直管的横截面面积之比为3:1,初始时,该装置的底部盛有水银;活塞与水银面之间有一定量的气体,气柱高度为l(以cm为单位);竖直管内的水银面比气缸内的水银面高出3l/8。现使活塞缓慢向上移动11l/32,这时气缸和竖直管内的水银面位于同一水平面上,求初始时气缸内气体的压强(以cmHg为单位)
一矿井深45m,在井口每隔一定时间自由落下一个小球,当第7个小球从井口下落时,第一个小球恰好落至井底,g=10m/s2,问:
(1)相邻两个小球下落的时间间隔是多少?
(2)这时第3个小球和第5个小球相距多远?
一空间探测器从某一星球表面竖直升空,其速度随时间的变化情况如图所示,图线上A、B、C三点对应的时刻分别为9 s、25 s和45 s。试求:
(1)求探测器在该星球表面达到的最大高度H;
(2)求空间探测器下落过程中的加速度.
如图所示是一个设计“过山车”的试验装置的原理示意图,斜面AB与竖直面内的圆形轨道在B点平滑连接,圆形轨道半径为R。一个质量为m的小车(可视为质点)在A点由静止释放沿斜面滑下,A点距水平面的高度为4R,当它第一次经过B点进入圆形轨道时对轨道的压力为其重力的7倍,小车恰能完成圆周运动并第二次经过最低点B后沿水平轨道向右运动。已知重力加速度为g,斜面轨道与底面的夹角为530。(sin530="0.8" cos530=0.6)求:
(1)小车第一次经过B点时的速度大小vB;
(2)小车在斜面轨道上所受阻力与其重力之比k;
(3)假设小车在竖直圆轨道左、右半圆轨道部分克服阻力做的功相等,求小车第二次经过竖直圆轨道最低点时的速度大小?
利用皮带运输机将物体由地面运送到高出水平地面的C平台上,C平台离地面的竖直高度为5m,已知皮带和物体间的动摩擦因数为0.75,运输机的皮带以2m/s的速度匀速顺时针运动且皮带和轮子之间不打滑.(g=10m/s2, tan37°=0.75)
(1)如图所示,若两个皮带轮相同,半径都是25cm,则此时轮子转动的角速度是多大?
(2)假设皮带在运送物体的过程中始终是张紧的.为了将地面上的物体运送到平台上,皮带的倾角θ最大不能超过多少?
(3)皮带运输机架设好之后,皮带与水平面的夹角为θ=30°.现将质量为1kg的小物体轻轻地放在皮带的A处,运送到C处.试求由于运送此物体,运输机比空载时多消耗的能量.
如图所示,光滑水平面上静止放着长L=1.6m,质量为M=3kg的木板(厚度不计),一个质量为m=1kg的小物体放在木板的最右端,m和M之间的动摩擦因数μ=0.1,今对木板施加一水平向右的拉力F,(g取10m/s2)
(1)为使两者保持相对静止,F不能超过多少?
(2)如果F=10N,求小物体离开木板时的速度?