在平面直角坐标系中,已知,是圆的一条直径,是动点,且直线与的斜率之积等于.(1)求动点的轨迹方程;(2)设直线和分别与直线交于点,问:是否存在点使得与的面积相等?若存在,求出点的坐标;若不存在,说明理由.
已知方程. (Ⅰ)若此方程表示圆,求的取值范围; (Ⅱ)若(Ⅰ)中的圆与直线相交于M,N两点,且OMON(O为坐标原点)求的值; (Ⅲ)在(Ⅱ)的条件下,求以MN为直径的圆的方程.
已知圆C:内有一点P(2,2),过点P作直线交圆C于A、B两点. (Ⅰ)当经过圆心C时,求直线的方程; (Ⅱ)当弦AB被点P平分时,写出直线的方程; (Ⅲ)当直线的倾斜角为45º时,求弦AB的长
已知的最大值为,最小值为。求函数的周期、最值,并求取得最值时的之值;并判断其奇偶性。
已知角终边上一点P(-4,3),求的值
(1)化简; (2)化简
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号