(本题12分)
九年级数学兴趣小组组织了以“等积变形”为主题的课题研究.
第一学习小组发现:如图(1),点A、点B在直线l1上,点C、点D在直线l2上,若l1∥l2,则S△ABC=S△ABD;反之亦成立.
第二学习小组发现:如图(2),点P是反比例函数上任意一点,过点P作x轴、y轴的垂线,垂足为M、N,则矩形OMPN的面积为定值|k|.
请利用上述结论解决下列问题:
(1)如图(3),四边形ABCD、与四边形CEFG都是正方形点E在CD上,正方形ABCD边长为2,则=_________.
(2)如图(4),点P、Q在反比例函数图象上,PQ过点O,过P作y轴的平行线交x轴于点H,过Q作x轴的平行线交PH于点G,若
=8,则
=_________,k=_________.
(3)如图(5)点P、Q是第一象限的点,且在反比例函数图象上,过点P作x轴垂线,过点Q作y轴垂线,垂足分别是M、N,试判断直线PQ与直线MN的位置关系,并说明理由.
解不等式组:,并把它的解集在数轴上表示出来.
已知正方形的面积是(x>0,y>0),利用分解因式写出表示该正方形的边长的代数式.
根据题意填充理由:
已知:如下图所示,∠1=∠2.求证:∠3+∠4=180°.
证明:∵∠5=∠2( ).
又∠1=∠2(已知).
∴∠5=∠1( ).
∴AB∥CD( ).
∴∠3+∠4=180°( ).
如图,在直角坐标系中,已知点A(-1,0)、B(0,2),将线段AB绕点A按逆时针方向旋转90°至AC.
(1)点C的坐标为(,);
(2)若二次函数的图象经过点C.
①求二次函数的关系式;
②当-1≤x≤4时,直接写出函数值y对应的取值范围;
③在此二次函数的图象上是否存在点P(点C除外),使△ABP是以AB为直角边的等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.
数学实验室:小明取出一张矩形纸片ABCD,AD=BC=5,AB=CD=25.他先在矩形ABCD的边AB上取一点M,接着在CD上取一点N,然后将纸片沿MN折叠,使MB′与DN交于点K,得到△MNK(如图①).
(1)试判断△MNK的形状,并说明理由.
(2)如何折叠能够使△MNK的面积最大?请你利用备用图探究可能出现的情况,求出最大值.