游客
题文

操作:小英准备制作一个表面积为6cm2的正方体纸盒,现选用一些废弃的纸片进行如下设计:

说明:
方案一:图形中的圆过点A.B.C;
方案二:直角三角形的两直角边与展开图左下角的正方形边重合,斜边经过两个正方形的顶点.
纸片利用率=×100%
发现:(1)小英发现方案一中的点A.B恰好为该圆一直径的两个端点.你认为小英的这个发现是否正确,请说明理由.
(2)小英通过计算,发现方案一中纸片的利用率仅约为38.2%.请帮忙计算方案二的利用率,并写出求解过程.(结果精确到0.1%)
探究:(3)小英感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直接写出方案三的利用率.(结果精确到0.1%)

说明:方案三中的每条边均过其中两个正方形的顶点.

科目 数学   题型 解答题   难度 较难
知识点: 圆内接四边形的性质
登录免费查看答案和解析
相关试题

如图,在6×8网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点.

(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1︰2;
(2)连接(1)中的AA′,求四边形AA′C′C的周长.(结果保留根号)

在网格图中,画出相应的图形.

(1)将图形沿x轴负方向平移3个单位,得到△A1B1C1
(2)关于x轴对称,得到△A2B2C2
(3)以点C2为位似中心,各边扩大到原来的2倍,得到△A3B3C3

(陕西)某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).

①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;
②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.
根据以上测量过程及测量数据,请你求出河宽BD是多少米.

(浙江绍兴)课本中有一道作业题:

小颖解得此题的答案为48mm.小颖善于反思,她又提出了如下的问题.
(1)如果原题中所要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成的,如图,此时,这个矩形零件的两条边长又分别为多少mm?请你计算;
(2)如果原题中所要加工的零件只是一个矩形,如图,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.

如图,王华在晚上由路灯A走向路灯B,当他走到点P时,发现身后的影子的顶部刚好接触到路灯A的底部;当他向前走12m到达Q时,发现身前他的影子的顶部刚好接触到路灯B的底部.已知王华的身高为1.6m,两个路灯的高度都是9.6m,且AP=QB.

(1)求两个路灯之间的距离AB;
(2)当王华走到路灯B时,他在路灯A照射下的影长为多少?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号