(本小题满分12分)深圳市于2014年12月29日起实施小汽车限购政策.根据规定,每年发放10万个小汽车名额,其中电动小汽车占20%,通过摇号方式发放,其余名额通过摇号和竞价两种方式各发放一半.政策推出后,某网站针对不同年龄段的申请意向进行了调查,结果如下表所示:
申请意向 年龄 |
摇号 |
竞价(人数) |
合计 |
|
电动小汽车(人数) |
非电动小汽车(人数) |
|||
30岁以下 (含30岁) |
50 |
100 |
50 |
200 |
30至50岁 (含50岁) |
50 |
150 |
300 |
500 |
50岁以上 |
100 |
150 |
50 |
300 |
合计 |
200 |
400 |
400 |
1000 |
(1)采取分层抽样的方式从30至50岁的人中抽取10人,求其中各种意向人数;
(2)在(1)中选出的10个人中随机抽取4人,求其中恰有2人有竞价申请意向的概率;
(3)用样本估计总体,在全体市民中任意选取4人,其中摇号申请电动小汽车意向的人数记为,求
的分布列和数学期望.
已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.
如图,已知ABCD是矩形,AB=a,AD=b,PA⊥平面ABCD,PA=2c,Q是PA的中点.
求:(1)Q到BD的距离;
(2)P到平面BQD的距
如图,在梯形ABCD中,AD∥BC,∠ABC=,AB=
AD=a,
∠ADC=arccos,PA⊥面ABCD且PA=a.
(1)求异面直线AD与PC间的距离;
(2)在线段AD上是否存在一点F,使点A到平面PCF的距离为
如图,已知三棱柱A1B1C1—ABC的底面是边长为2的正三角形,侧棱A1A与AB、AC均成45°角,且A1E⊥B1B于E,A1F⊥CC1于F.
(1)求点A到平面B1BCC1的距离;
(2)当AA1多长时,点A1到平面ABC与平面B1BCC1的距离相等.
已知正四棱柱ABCD—A1B1C1D1,点E在棱D1D上,截面EAC∥D1B且面EAC与底面ABCD所成的角为45°,AB=a,求:
(1)截面EAC的面积;
(2)异面直线A1B1与AC之间的距离;
(3)三棱锥B1—EAC的体积.