(14’)如图,在平面直角坐标系中,A、B为
轴上两点,C、D为
轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C的坐标为(0,
),点M是抛物线C2:
(
<0)的顶点.
(1)求A、B两点的坐标;
(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;
(3)当△BDM为直角三角形时,求的值.
把一副三角板如图甲放置,其中,
,
,斜边
,
。把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙)。这时AB与CD1相交于点
,与D1E1相交于点F。
求
的度数;
求线段AD1的长;
若把三角形D1CE1绕着点
顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部、外部、还是边上?说明理由。
如图,⊙O是Rt的外接圆,
,点P是圆外一点,PA切⊙O于点A,且PA = PB。求证:PB是⊙O的切线
如图,⊙A、⊙B、⊙C两两不相交,且半径都是2cm,图中的三个扇形(即三个阴影部分)的面积之和是多少?弧长的和为多少?
先阅读,再解答:
我们在判断点是否在直线
上时,常用的方法:把
代入
中,由
,判断出点
不在直线
上。小明由此方法并根据“两点确定一条直线”,推断出点A(1,2),B(3,4),C(-1,6)三点可以确定一个圆。你认为他的推断正确吗?请你利用上述方法说明理由
为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2010年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.求每年市政府投资的增长率;
若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房.