游客
题文

如图,抛物线y=-x2+bx+c与x轴交于A(-1,0),B(5,0)两点,直线y=-x+3与y轴交于点C,,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m。

(1)求抛物线的解析式;
(2)若PE =5EF,求m的值;
(3)若点E/是点E关于直线PC的对称点、是否存在点P,使点E/落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由。

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如图,在平面直角坐标系中, A 点的坐标为 ( a , 6 ) AB x 轴于点 B cos OAB = = 3 5 ,反比例函数 y = k x 的图象的一支分别交 AO AB 于点 C D .延长 AO 交反比例函数的图象的另一支于点 E .已知点 D 的纵坐标为 3 2

(1)求反比例函数的解析式;

(2)求直线 EB 的解析式;

(3)求 S ΔOEB

已知 ΔABC 中, A = 90 °

(1)请在图1中作出 BC 边上的中线(保留作图痕迹,不写作法);

(2)如图2,设 BC 边上的中线为 AD ,求证: BC = 2 AD

攀枝花市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了车费24.8元.求该同学的家到学校的距离在什么范围?

某校为了预测本校九年级男生毕业体育测试达标情况,随机抽取该年级部分男生进行了一次测试(满分50分,成绩均记为整数分),并按测试成绩 m (单位:分)分成四类: A ( 45 < m 50 ) B ( 40 < m 45 ) C ( 35 < m 40 ) D ( m 35 ) 绘制出如图所示的两幅不完整的统计图,请根据图中信息解答下列问题:

(1)求本次抽取的样本容量和扇形统计图中 A 类所对的圆心角的度数;

(2)若该校九年级男生有500名, D 类为测试成绩不达标,请估计该校九年级男生毕业体育测试成绩能达标的有多少名?

如图,已知抛物线 y = a x 2 + bx 3 x 轴交于点 A ( 3 , 0 ) 和点 B ( 1 , 0 ) ,交 y 轴于点 C ,过点 C CD / / x 轴,交抛物线于点 D

(1)求抛物线的解析式;

(2)若直线 y = m ( 3 < m < 0 ) 与线段 AD BD 分别交于 G H 两点,过 G 点作 EG x 轴于点 E ,过点 H HF x 轴于点 F ,求矩形 GEFH 的最大面积;

(3)若直线 y = kx + 1 将四边形 ABCD 分成左、右两个部分,面积分别为 S 1 S 2 ,且 S 1 : S 2 = 4 : 5 ,求 k 的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号