(本题10分)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,反比例函数在第一象限内的图象经过点D,与AB相交于点E,且点B(4,2).
(1)求反比例函数的关系式;
(2)求四边形OAED的面积;
(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,若,求直线GH的函数关系式.
计算:①
②.
计算:
如图,在一块长为20m,宽为15m的矩形绿化带的四周扩建一条宽度相等的小路(图中阴影部分),建成后绿化带与小路的总面积为546m2,如果设小路的宽度为x m,那么下列方程正确的是()
A.![]() |
B.![]() |
C.![]() |
D.![]() |
如图1,在△ABC中,AC=AB=2,∠A=90°,将一块与△ABC全等的三角板的直角顶点放在点C上,一直角边与BC重叠.
(1)操作1:固定△ABC,将三角板沿方向平移,使其直角顶点落在BC的中点M,如图2所示,探究:三角板沿
方向平移的距离为___________;
(2)操作2:在(1)的情况下,将三角板BC的中点M顺时针方向旋转角度,如图3所示,探究:设三角形板两直角边分别与AB、AC交于点P、Q,观察四边形MPAQ形状的变化,问:四边形MPAQ的面积S是否改变,若不变,求其面积;若改变,试说明理由;
(3)在(2)的情形下,连PQ,设BP=x,记△MPQ的面积为y,试求y关于x的函数关系式,并求x为何值时,y的值是四边形MPAQ的面积的一半,此时,指出四边形MPAQ的形状.
如图,正方形ABCD的长为1, 点E是AD边上的动点且从点A沿AD向D运动, 以BE为边,在BE的上方作正方形BEFG,为DC与EF的交点,请探索:
(1)连接CG,线段AE与CG是否相等? 请说明理由.
(2)设AE=x, CG=y, 请确定y与x的函数关系式并说明自变量的取值范围.
(3)连接BH, 当点E运动到边AD上的某一点时将有△BEH∽△BAE,请你指出这一点的位置,并说明理由.