如图所示是一个透明圆柱体的横截面,一束单色光平行于直径AB射向圆柱体,光线经过折射后恰能射到B点。已知透明介质对单色光的折射率为,横截面的半径为R,光在真空中的传播速度为c,求:①光在介质中运动的时间;
②平行光线到直径AB的距离d。
某发电站的输出功率为104 kW,输出电压为4 kV,通过理想变压器升压后向远处供电。已知输电导线的电阻为25.6 Ω,输电线路损失的功率为输出功率的4%,求:
(1)输电线上的电流;
(2)输电线路上的电压损失;
(3)升压变压器的原副线圈匝数比。
如图甲所示为电视机中的显像管的原理示意图,电子枪中的灯丝加热阴极而逸出电子,这些电子再经加速电场加速后,从O点进入由磁偏转线圈产生的偏转磁场中,经过偏转磁场后打到荧光屏MN上,使荧光屏发出荧光形成图像,不计逸出的电子的初速度和重力。已知电子的质量为m、电荷量为e,加速电场的电压为U,偏转线圈产生的磁场分布在边长为l的正方形abcd区域内,磁场方向垂直纸面,且磁感应强度随时间的变化规律如图乙所示。在每个周期内磁感应强度都是从-B0均匀变化到B0。磁场区域的左边界的中点与O点重合,ab边与OO′平行,右边界bc与荧光屏之间的距离为s。由于磁场区域较小,且电子运动的速度很大,所以在每个电子通过磁场区域的过程中,可认为磁感应强度不变,即为匀强磁场,不计电子之间的相互作用。求:
(1)为使所有的电子都能从磁场的bc边射出,求偏转线圈产生磁场的磁感应强度的最大值。
(2)若所有的电子都能从磁场的bc边射出时,荧光屏上亮线的最大长度。
如图所示,离子源从小孔发射出带电量为e的正离子(初速可忽略),在加速电压U的作用下,沿MO方向进入匀强磁场中,磁场限制在以O为圆心,半径为r的区域内,磁感应强度为B,方向垂直纸面向外,离子从N点射出,已知(不计重力),则正离子质量为多少?正离子通过磁场所需的时间为多少?
如图所示,匀强磁场沿水平方向,垂直纸面向里,磁感强度B=1T,匀强电场方向水平向右,场强N/C。一带正电的微粒质量m=2×10-6kg,电荷量q=2×10-6C,在此空间恰好做匀速直线运动,问:
(1)带电微粒运动速度的大小和方向怎样?
(2)若微粒运动到P点时刻,突然将磁场撤去,那么经多少时间微粒到达Q点?(设PQ连线与电场方向平行)
如图所示,在x轴上方有垂直于xy平面向里的匀强磁场,磁感应强度为B;在x轴下方有沿y轴负方向的匀强电场,场强为E。一质量为m,电量为-q的粒子从坐标原点O沿着y轴正方向射出。射出以后,它第三次到达x轴时,与点O的距离为L。不计粒子重力,求:
(1)粒子射出时的速度v;
(2)粒子从射出以后第三次到达x轴所用的总时间;
(3)若粒子从射出以后到第n次向下穿过x轴所用的总时间为tn,写出tn的表达式。