(本小题满分12分)如图,四棱锥的底面是正方形,
⊥底面
,点
在棱
上.
(Ⅰ)求证:平面⊥平面
;
(Ⅱ)当且
为
的中点时,求
与平面
所成角的正弦值.
已知,若
是
的充分而不必要条件,求实数m的取值范围.
在平面直角坐标系xoy中,点A,B的坐标分别是,直线AM、BM相交于点M,且它们的斜率之积是
.
(1)求 M的轨迹C方程;
(2)若直线l经过点,与轨迹C有且仅有一个公共点,求直线l的方程.
已知c>0,设命题p:函数为减函数,命题q:当
时,函数
恒成立,如果p或q为真命题,p且q为假命题,求c的取值范围.
在平面直角坐标系xoy中,点P到两点的距离之和等于4,设点P的轨迹为C.
(Ⅰ)写出C的方程;
(Ⅱ)设直线与C交于A,B两点,k为何值时
?
已知抛物线C的顶点在坐标原点,对称轴是x轴,它的弦PQ所在直线的方程为,弦长等于
,求抛物线的C方程.