游客
题文

如图是在竖直平面内的一个“通道游戏”.图中竖直线段和斜线段都表示通道,并且在交点处相遇,若竖直线段有一条的为第一层,有二条的为第二层, ,依次类推.现有一颗小弹子从第一层的通道里向下运动,若在通道的分叉处,小弹子以相同的概率落入每个通道.记小弹子落入第层第个竖直通道(从左至右)的概率为,某研究性学习小组经探究发现小弹子落入第层的第个通道的次数服从二项分布,请你解决下列问题.

(Ⅰ)试求的值,并猜想的表达式;(不必证明)
(Ⅱ)设小弹子落入第6层第个竖直通道得到分数为,其中,试求的分布列及数学期望.

科目 数学   题型 解答题   难度 较难
知识点: 随机思想的发展
登录免费查看答案和解析
相关试题

两个具有线性相关关系的变量的一组数据为:

数据
1
2
3

n
变量x
x1
x2
x3

xn
变量y
y1
y2
y3

yn

将以上数据,以x为自变量,y为因变量,得回归方程为=bx+a;将y为自变量,x为因变量,得回归方程为=b′y+a′.
定义两个变量的相关关系数r的计算公式为r=,它可表示两个变量线性关系的强弱.
试问r能否用上述两方程中的b,a与b′,a′表示?如能,怎样表示?

假设关于某设备的使用年限x(年)和所支出的维修费y(万元)有如下统计资料:

x
2
3
4
5
6
y
2.2
3.8
5.5
6.5
7.0

若由资料知,y对x呈线性相关关系.试求:
(1)线性回归方程;
(2)估计使用年限为10年时,维修费用约是多少?

日常生活中,某些东西所含的热量比较高,对我们的身体有一定的影响,下表给出了不同类型八种饼干的数据,第一列数据表示八种饼干各含热量的百分比,第二列数据表示顾客对八种饼干所给予分数(百分制).

品种
所含热量的百分比
口味记录
1
25
89
2
34
89
3
20
80
4
19
78
5
26
75
6
20
71
7
19
65
8
24
62

(1)作出这些数据的散点图;
(2)求出回归直线;
(3)关于两个变量之间的关系,你能得出什么结论?
(4)为什么人们更喜欢吃位于回归直线上方的饼干而不是下方的饼干?

判断下列关系是否为相关关系:
(1)历史上,有人认为人们的着装与经济好坏有关系,着装越鲜艳,经济越景气,你认为着装与经济真的有这种相关关系吗?
(2)下面是6位同学的身高与体重的数据表:

身高(cm)
168
173
176
179
181
185
体重(kg)
56
59
60
65
64
68

画出散点图,并判断它们是否有相关关系.

从全校参加期末考试的试卷中,抽取一个样本,考察成绩(均为整数)的分布,将样本分成5组,绘成频率分布直方图,如图2-2-8中从左到右各小组的小矩形的高之比为2∶3∶6∶4∶1,最左边的一组频数是6.

图2-2-8
(1)求样本容量;
(2)求105.5~120.5这一组的频数及频率;
(3)如果成绩大于120分为优秀,估计这次考试成绩的优秀率.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号