如图是在竖直平面内的一个“通道游戏”.图中竖直线段和斜线段都表示通道,并且在交点处相遇,若竖直线段有一条的为第一层,有二条的为第二层, ,依次类推.现有一颗小弹子从第一层的通道里向下运动,若在通道的分叉处,小弹子以相同的概率落入每个通道.记小弹子落入第层第
个竖直通道(从左至右)的概率为
,某研究性学习小组经探究发现小弹子落入第
层的第
个通道的次数服从二项分布,请你解决下列问题.
(Ⅰ)试求及
的值,并猜想
的表达式;(不必证明)
(Ⅱ)设小弹子落入第6层第个竖直通道得到分数为
,其中
,试求
的分布列及数学期望.
两个具有线性相关关系的变量的一组数据为:
数据 |
1 |
2 |
3 |
… |
n |
变量x |
x1 |
x2 |
x3 |
… |
xn |
变量y |
y1 |
y2 |
y3 |
… |
yn |
将以上数据,以x为自变量,y为因变量,得回归方程为=bx+a;将y为自变量,x为因变量,得回归方程为
=b′y+a′.
定义两个变量的相关关系数r的计算公式为r=,它可表示两个变量线性关系的强弱.
试问r能否用上述两方程中的b,a与b′,a′表示?如能,怎样表示?
假设关于某设备的使用年限x(年)和所支出的维修费y(万元)有如下统计资料:
x |
2 |
3 |
4 |
5 |
6 |
y |
2.2 |
3.8 |
5.5 |
6.5 |
7.0 |
若由资料知,y对x呈线性相关关系.试求:
(1)线性回归方程;
(2)估计使用年限为10年时,维修费用约是多少?
日常生活中,某些东西所含的热量比较高,对我们的身体有一定的影响,下表给出了不同类型八种饼干的数据,第一列数据表示八种饼干各含热量的百分比,第二列数据表示顾客对八种饼干所给予分数(百分制).
品种 |
所含热量的百分比 |
口味记录 |
1 |
25 |
89 |
2 |
34 |
89 |
3 |
20 |
80 |
4 |
19 |
78 |
5 |
26 |
75 |
6 |
20 |
71 |
7 |
19 |
65 |
8 |
24 |
62 |
(1)作出这些数据的散点图;
(2)求出回归直线;
(3)关于两个变量之间的关系,你能得出什么结论?
(4)为什么人们更喜欢吃位于回归直线上方的饼干而不是下方的饼干?
判断下列关系是否为相关关系:
(1)历史上,有人认为人们的着装与经济好坏有关系,着装越鲜艳,经济越景气,你认为着装与经济真的有这种相关关系吗?
(2)下面是6位同学的身高与体重的数据表:
身高(cm) |
168 |
173 |
176 |
179 |
181 |
185 |
体重(kg) |
56 |
59 |
60 |
65 |
64 |
68 |
画出散点图,并判断它们是否有相关关系.
从全校参加期末考试的试卷中,抽取一个样本,考察成绩(均为整数)的分布,将样本分成5组,绘成频率分布直方图,如图2-2-8中从左到右各小组的小矩形的高之比为2∶3∶6∶4∶1,最左边的一组频数是6.
图2-2-8
(1)求样本容量;
(2)求105.5~120.5这一组的频数及频率;
(3)如果成绩大于120分为优秀,估计这次考试成绩的优秀率.