(本小题满分7分)《选修4-4:坐标系与参数方程》已知直线的极坐标方程为,圆的参数方程为(其中为参数).(Ⅰ)将直线的极坐标方程化为直角坐标方程;(Ⅱ)求圆上的点到直线的距离的最小值.
·广东理)设数列的前项和为.已知,,. (1) 求的值; (2) 求数列的通项公式; (3) 证明:对一切正整数,有.
·大纲理)等差数列的前n项和为.已知,且成等比数列,求的通项公式.
已知正项数列,其前项和满足且是和的等比中项.. (1)求数列的通项公式; (2)设,求数列的前99项和.
已知为公差不为零的等差数列,首项,的部分项、、 、恰为等比数列,且,,. (1)求数列的通项公式(用表示); (2)设数列的前项和为, 求证:(是正整数
已知数列的前项和为,,若成等比数列,且时,. (1)求证:当时,成等差数列; (2)求的前n项和.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号