已知抛物线,准线与轴的交点为.(Ⅰ)求抛物线的方程;(Ⅱ)如图,,过点的直线与抛物线交于不同的两点,AQ与BQ分别与抛物线交于点C,D,设AB,DC的斜率分别为,的斜率分别为,问:是否存在常数,使得,若存在,求出的值,若不存在,说明理由.
如图,已知圆,直线是圆的一条切线,且与椭圆交于不同的两点. (1)求与的关系; (2)若弦的长为,求直线的方程.
(本小题12分)已知点及圆. (1)若直线过点且被圆截得的线段长为,求直线的方程; (2)求圆内过点的弦中点的轨迹方程.
(本小题12分) 已知,两个命题,函数在内单调递减;曲线与轴交于不同两点,如果是假命题,是真命题,求实数a的取值范围.
(本小题12分)已知满足不等式组, 求(1)的最大值; (2)的最小值.
(本小题10分)已知圆心的坐标为(1,1),圆与轴和轴都相切. (1)求圆的方程; (2)求与圆相切,且在轴和轴上的截距相等的直线方程.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号