(本小题满分12分)某校为了响应《中共中央国务院关于加强青少年体育增强青少年体质的意见》精神,落实“生命—和谐”教育理念和阳光体育行动的现代健康理念,学校特组织“踢毽球”大赛,某班为了选出一人参加比赛,对班上甲乙两位同学进行了次测试,且每次测试之间是相互独立.成绩如下:(单位:个/分钟)
甲 |
80 |
81 |
93 |
72 |
88 |
75 |
83 |
84 |
乙 |
82 |
93 |
70 |
84 |
77 |
87 |
78 |
85 |
(1)用茎叶图表示这两组数据
(2)从统计学的角度考虑,你认为选派那位学生参加比赛合适,请说明理由?
(3)若将频率视为概率,对甲同学在今后的三次比赛成绩进行预测,记这三次成绩高于个/分钟的次数为
,求
的分布列及数学期望
.
(参考数据:,
)
(本小题满分12分)如图,为矩形,
为梯形,平面
平面
,
,
,
.
(Ⅰ)若为
中点,求证:
平面
;
(Ⅱ)求平面与
所成锐二面角的余弦值.
((本题15分)
已知点(1,)是函数
且
)的图象上一点,等
比数列
的前n项和为
,数列
的首项为c,且前n项和
满足
-
=
+
(n
2)
(1)求数列和
的通项公式;
(2)若数列{前n项和为
,问
>
的最小正整数n是多少?
((本题15分)
已知函数,
(Ⅰ)若曲线在点
处的切线斜率为3,且
时
有极值,求函数
的解析式;
(Ⅱ)在(Ⅰ)的条件下,求函数在
上的最大值和最小值。
((本题14分)
已知:A、B、C是的内角,
分别是其对边长,向量
,
,
(Ⅰ)求角A的大小;
(Ⅱ)若求
的长.
(本题14分)
设函数
(1)求函数的最小正周期和单调递增区间;
(2)当时,
的最大值为2,求
的值.