(本小题满分12分)某校为了响应《中共中央国务院关于加强青少年体育增强青少年体质的意见》精神,落实“生命—和谐”教育理念和阳光体育行动的现代健康理念,学校特组织“踢毽球”大赛,某班为了选出一人参加比赛,对班上甲乙两位同学进行了次测试,且每次测试之间是相互独立.成绩如下:(单位:个/分钟)
甲 |
80 |
81 |
93 |
72 |
88 |
75 |
83 |
84 |
乙 |
82 |
93 |
70 |
84 |
77 |
87 |
78 |
85 |
(1)用茎叶图表示这两组数据
(2)从统计学的角度考虑,你认为选派那位学生参加比赛合适,请说明理由?
(3)若将频率视为概率,对甲同学在今后的三次比赛成绩进行预测,记这三次成绩高于个/分钟的次数为
,求
的分布列及数学期望
.
(参考数据:,
)
已知f(x)=cos(ωx+φ)的最小正周期为π,且f
=
.
(1)求ω和φ的值;
(2)在给定坐标系中作出函数f(x)在[0,π]上的图象;
(3)若f(x)>,求x的取值范围.
已知a=(2cosx,cos2x),b=(sinx,-),f(x)=a·b.
(1)求f(x)的振幅、周期,并画出它在一个周期内的图象;
(2)说明它可以由函数y=sinx的图象经过怎样的变换得到.
已知函数f(x)=2·sin
cos
-sin(x+π).
(1)求f(x)的最小正周期;
(2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.
为了得到函数y=2sin(x∈R)的图象,只需把函数y=2sinx(x∈R)的图象上所有的点经过怎样的变换得到?
已知sin(3π+θ)=,
求的值.