如图所示,一质量为m=0.5kg,电荷量为q=+0.2C的小物块(可视为质点),放在离地面高度为h=5m的水平放置、厚度不计的绝缘圆盘边缘,并随圆盘一起绕中心转轴顺时针做匀速圆周运动,圆盘的角速度为ω=2rad/s,半径为r=1m,圆盘和小物块之间的动摩擦因数为μ=0.5。以圆盘左侧垂直于纸面的切面和过圆盘圆心O点与空间中A点的竖直平面为界(两平面平行),将空间分为Ⅰ、Ⅱ、Ⅲ三个空间区域,当小物块转动时,Ⅰ区域出现随时间均匀增大的电场E(图中未画出),电场方向是竖直方向。当E增大到E1时,小物块刚好从空间中的A点离开圆盘,且垂直于Ⅰ、Ⅱ区域边界进入Ⅱ区域,此时,Ⅱ区域和Ⅲ区域立即出现一竖直向上的匀强电场E2(图中未画出),E2=25N/C,且Ⅲ区域有一垂直于纸面向里的匀强磁场,磁场宽度为L=4m,g=10m/s2。求:
(1)E1的大小和方向;
(2)若小物块在磁场宽度范围内落地,则磁感应强度B的取值范围是多少?
(3)现将磁感应强度B取某一值,当小物块离开A后一小段时间,紧贴圆盘圆心O点下方以速度v0=m/s水平抛出一木制小球,最终两者在磁场宽度范围内的地面上相遇,则从小物块离开A点时开始计时,抛出木制小球的时刻t为多少?
如图所示,PN和MQ两板平行且板间存在垂直纸面向里的匀强磁场,两板间距离及PN和MQ长均为d,一带正电的质子从PN板的正中间O点以速度v0垂直射入磁场,为使质子能射出两板间,试求磁感应强度B的大小.已知质子带电荷量为e,质量为m.
如图所示为质谱仪的原理图,A为粒子加速器,电压为U1;B为速度选择器,磁场与电场正交,磁感应强度为B1,板间距离为d;C为偏转分离器,磁感应强度为B2.今有一质量为m、电量为q的正离子经加速后,恰好通过速度选择器,进入分离器后做半径为R的匀速圆周运动,求:
(1)粒子的速度v
(2)速度选择器的电压U2
(3)粒子在B2磁场中做匀速圆周运动的半径R.
如图所示,倾角为30°的光滑斜面与粗糙的水平面平滑连接.现将一滑块(可视为质点)从斜面上A点由静止释放,最终停在水平面上的C点.已知A点距水平面的高度h=0.8m,B点距C点的距离L=2.0m.(滑块经过B点时没有能量损失,g=10m/s2),求:
(1)滑块在运动过程中的最大速度;
(2)滑块与水平面间的动摩擦因数μ.
如图所示,用一根绳子a把物体挂起来,再用另一根水平的绳子b 把物体拉向一旁固定起来.物体的重力是40N,绳子a与竖直方向的夹角θ=37°,绳子a与b对物体的拉力分别是多大?(sin37°=0.6,cos37°=0.8)
列车在机车的牵引下沿平直铁轨匀加速行驶,在100s内速度由5.0m/s增加到15.0m/s.
(1)求列车的加速度大小.
(2)若列车的质量是1.0×106kg,机车对列车的牵引力是1.5×105N,求列车在运动中所受的阻力大小.