(2014年湖南永州3分)在求1+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:
S=1+6+62+63+64+65+66+67+68+69①
然后在①式的两边都乘以6,得:
6S=6+62+63+64+65+66+67+68+69+610②
②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S=,得出答案后,爱动脑筋的小林想:
如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2014的值?你的答案是( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上.若点A的坐标为(﹣2,﹣2),则k的值为( )
A.1 | B.﹣3 | C.4 | D.1或﹣3 |
已知:多项式x2﹣kx+1是一个完全平方式,则反比例函数y=的解析式为( )
A.y=![]() |
B.y=﹣![]() |
C.y=![]() ![]() |
D.y=![]() ![]() |
如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=(k≠0)与△ABC有交点,则k的取值范围是( )
A.1<k<2 B.1≤k≤3 C.1≤k≤4 D.1≤k<4
如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(﹣2,﹣3),则k的值为( )
A.1 | B.﹣5 | C.4 | D.1或﹣5 |
点A(x1,y1),B(x2,y2),C(x3,y3)都是反比例函数的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是( )
A.y3<y1<y2 | B.y1<y2<y3 |
C.y3<y2<y1 | D.y2<y1<y3 |